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We consider the coupled propagation of the pump and Stokes waves in a Raman active medium accounting
for the group velocity walk off and group velocity dispersion. Interplay of the Raman coherence and the
dispersion can lead to the formation of a complete band gap in the spectrum of linear waves consisting of the
two consecutive subgaps located at different frequencies. Using an approximate analytic technique, we find
exponentially localized solitons residing in the complete gap, and find algebraic solitons when the gap is
closed. Feasibility of observation of these structures in hollow fibers is discussed.
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I. INTRODUCTION

Solitons in a coupled system of Maxwell and Schrödinger
equations represent a physically distinct alternative to soli-
tons in systems where nonlinear corrections to the refractive
index are derived as Taylor expansions in the field products.
Slow light in coherent atomic systems having applications to
quantum processing of information �1� and generation of the
ultrashort pulse trains in a Raman medium �2� are both re-
lated to the certain classes of the solitonic solutions �3–5� of
the Maxwell-Schrödinger system, often referred to as
Maxwell-Bloch equations. Availability of recently developed
photonic band-gap �PBG� fibers with the gas filled hollow
cores allows to carry out quantum optics experiments �6–8�
in low loss, tightly focused and, simultaneously, diffraction
free regimes. These factors create favorable conditions for
the soliton related experiments �9� and have been shown to
dramatically reduce thresholds for the cascaded Raman pro-
cess and electromagnetically induced transparency �7,8�.

PBG fibers, however, poses noticeable Kerr nonlinearity
and strong geometrical dispersion, which are intrinsically
linked to the fiber structure. In our recent work �10� we have
confirmed that the Raman solitons in the Maxwell-
Schrödinger system withstand presence of the Kerr nonlin-
earity, which, however, influences their stability properties.
Our estimates �10� have demonstrated that typical durations
of the Raman solitons can vary from a few pico-seconds to
100s of femtoseconds. For such pulse durations the group
velocity dispersion �GVD� resulting from the combination of
the waveguide dispersion and dispersion due to non-Raman
transitions in the gas are expected to be of importance. The
aim of this work is to analyze GVD effects on Raman soli-
tons. We demonstrate that the Raman system with GVD
terms allows substantial analytical advances to be made in
certain limits and the problem is interesting enough to study
it separately from other complications. Observation of the
Raman solitons still represents a challenge and we hope that
continuing theoretical studies will stimulate experimental ac-
tivities.

II. MODEL EQUATIONS AND PREVIOUS RESULTS

We consider the propagation of the two optical pulses

with the envelopes described by the functions B̃1,2�z ,�� with

the carrier frequencies �1��2, such that �1−�2=�R is the
Raman transition frequency. Using the slowly varying enve-
lope approximation for the optical fields and the rotating
wave approximation for the antidiagonal elements of the
density matrix, one can derive the following dimensionless
system, see �11� and the Appendix below, where the deriva-
tion and normalization procedures are described in detail:

i��z + s�� + id1��
2�B̃1 = − QB̃2, �1�

i��z − s�� + id2��
2�B̃2 = − Q*B̃1, �2�

i��Q = − B̃1B̃2
*� , �3�

��� = −
i

2
�B̃1B̃2

*Q* − B̃1
*B̃2Q� . �4�

Here Q is the Raman coherence and � is the population
inversion. Q=0 and �=1 correspond to the unexcited Raman
medium. Relaxation of Q and � has been disregarded under
the assumption of the sufficiently short pulse durations �see
the Appendix�. The equality

�2 + �Q�2 = 1, �5�

can be derived from the condition that the total population of
the levels is 1. If the physical time is normalized to the
characteristic walk-off time of the two fields, then �s�=1 �see
the Appendix�. Without restriction of generality we can as-
sume s=−1. Parameters d1,2 measure the ratio of the walk-
off length to the GVD length. Physical scales involved for a
typical PBG filled with D2 are such that one unit of � ap-
proximately corresponds to 200 fs, unit of z—to 0.6 cm, unit
of �B1,2�2—to 4�1012 W/cm2, and �d1,2� can vary from zero
to �0.1 �see the Appendix for details�. The above power
levels are well within the reach of the amplified short-pulsed
laser systems.

Previous theoretical studies of the pulse propagation and
solitons in Raman media can be divided into two groups. The
first group deals with the classical model, when the medium
is described by the classical oscillator equation, which is Eq.
�3� with �=1. This approximation is valid for weak excita-
tions only, when most of the population remains in the
ground state. Solitons and other types of the localized solu-
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tions in this model have been reported in many studies, see,
e.g., �12�. Inclusion of GVD effects into this model together
with large detunings from the Raman resonance enable exis-
tence of the nonlinear Schrödinger �NLS� type bright-bright,
dark-bright, and dark-dark soliton pairs �13�. While, the
GVD effects for � constrained to 1 lead to the NLS type of
solitons �13�, ��1 allows for the stationary values of �Q�
different from 0 and therefore creates conditions for the gap
solitons to exist, see Ref. �10� and below.

Raman solitons in the model accounting for the dynamics
of � have been first reported in �14� for the two-field case
and later generalized to the multifrequency case �3�. This
model has been extensively used for backing of the experi-
mental work on generation of the short pulses in the cas-
caded Raman process �2�, which can be considered as its
main experimental test so far. Cascaded excitation of the
higher order Raman side bands not accounted for in our

model can be suppressed if the fields B̃1,2 are circularly po-
larized in opposite directions �15�. Integrability properties of
the two-field Raman systems have been studied in Ref. �16�.

III. BAND GAPS INDUCED BY
THE RAMAN COHERENCE

In what follows we will be seeking the coupled solitons
moving with the common group velocity characterized by
the parameter v and having the wave number shift �. There-

fore we assume B̃1,2�� ,z�=B1,2�t=�−vz ,z�ei�z and find

i��z + i� + v1�t + id1�t
2�B1 = − QB2, �6�

i��z + i� + v2�t + id2�t
2�B2 = − Q*B1, �7�

i�tQ = − B1B2
*� , �8�

�t� = −
i

2
�B1B2

*Q* − B1
*B2Q� , �9�

where

v1,2 = � 1 − v . �10�

First we consider properties of the linear wave solutions
of Eqs. �6� and �7�. Replacing B1,2 with e−i�t and assuming
Q=0, we find for the wave numbers �=v1�+d1�2 and
�=v2�+d2�2. The dispersion curves intersect at �=0 and
�=�0, where

�0 =
2

d1 − d2
. �11�

Finite values of the Raman coherence Q replace crossings of
the dispersion curves with the avoided crossings, see Figs.
1�a� and 1�b�, forming the two subgaps at �=0 and �=�0.
Methods of preparation of the finite coherence in the Raman
medium have been discussed, e.g., in Ref. �17�. If d1,2 have
the same signs, then the values of � for the two branches of
the dispersion characteristic also have the same signs for
���→�. Therefore, the avoided crossings in this case never
can form a complete band gap, see Fig. 1�a�. Under the com-

plete band gap we understand such a region in the �� ,��
plane, that one can fit a family of straight lines into it without
crossing or touching the dispersion characteristics. If d1,2
have the opposite signs, d1d2	0, then the complete band
gap exists, see Fig. 1�b�, and it looks like a superposition of
the two subgaps separated by �0. A typical transmission win-
dow of PBG fibers contains the zero GVD point, thereby
allowing for the opposite GVD signs of the interacting Ra-
man harmonics. If d1,2=0, then there is only one crossing
point at �=0 and one band gap centered at �=0 �10�. In
what follows it is convenient for us to write d2 as follows:

d2 = − d1 + 
 , �12�

where 
 is a number such that, d1d2	0, i.e., d1
	d1
2.

Dispersion characteristics of the type similar to Fig. 1�b�
and corresponding soliton structures have been reported pre-
viously quite differently from our contexts of the coupled
Korteweg-de Vries equations �18� and coupled LC circuits
�19�.

IV. EQUATIONS FOR THE SLOW AMPLITUDES

We demonstrate below that the approximate analytical
soliton solutions of Eqs. �6�–�9� can be found in the limit,
when ��0� is much greater than the spectral width of the
pulses located at the individual subgaps. On the other hand,
Eqs. �6� and �7� are already equations for slowly varying

FIG. 1. Dispersion characteristics for d1d2�0 �a� and d1d2	0
�b�. The parameters are the following: v1=−0.36, d1=−0.0072,
v2=1.64, d2=−0.0328 �a� and v1=−0.36, d1=0.0072, v2=1.64,
d2=−0.0328. Subgaps G1,2 form a complete band gap in the �b�
case.
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amplitudes and one should assume that the spectral separa-
tion of the two subgaps, is less than the Raman frequency. A
quantitative criterion for this condition can be chosen as
��0 /�R�	1/2, where �0,R are assumed dimensionless �see
the Appendix for numerical estimates�.

We assume that B1 and B2 are composed of the two spec-
tral components centered at �=0 and �=�0:

B1,2 = C1,2 + G1,2e−i�0t+iKz. �13�

C1,2 and G1,2 are the functions which vary in t slowly relative
to e−i�0t, so that their second derivatives and all the fast os-
cillating exponential terms can be neglected. The free param-
eter K characterizes the possible difference of the wave num-
bers.

Substituting Eq. �13� into Eqs. �6�–�9� we find

i��z + i� + v1�t�C1 = − QC2, �14�

i��z + i� + v2�t�C2 = − Q*C1, �15�

i��z + i�� + �� + u1�t�G1 = − QG2, �16�

i��z + i�� + �� + u2�t�G2 = − Q*G1, �17�

i�tQ = − ��C1C2
* + G1G2

*� , �18�

�t� = − Im�Q�C2C1
* + G1

*G2�� , �19�

where

� = K − K0,K0 = �0
v1d2 − d1v2

d2 − d1
, �20�

u1 =
1 + 
/2d1

1 − 
/2d1
− v, u2 = −

1 − 3
/2d1

1 − 
/2d1
− v . �21�

In what follows we choose K=K0 implying

� = 0. �22�

Formally expansions similar to �13� should be done for Q
and �. However, higher harmonics of Q and � are of the
order of 1 /�0 at least and, we verified numerically that their
effect on the results presented below is negligible.

V. ANALYTICAL SOLITON SOLUTIONS

Now we make a simplifying assumption that all the slow
amplitudes can be presented as a constant multiplied by the
unknown function f�x�, where

x =
t

w
�23�

and w is the soliton width, so that

C1 = c1f�x�, C2 = ic2f�x� , �24�

G1 = g1f�x�, G2�t� = ig2f�x� . �25�

We also assume

Q = − i� + q�x�, Im q = 0. �26�

Implementing the above substitutions we find that Eqs.
�14�–�17� are transformed to

i��c2 − c1�f =
v1c1

w
�xf + c2qf , �27�

i��c1 − c2�f =
v2c2

w
�xf − c1qf , �28�

i��g2 − g1�f =
u1g1

w
�xf + g2qf , �29�

i��g1 − g2�f =
u2g2

w
�xf − g1qf . �30�

Below we specify two cases when the above system of the
differential-algebraic equations has soliton solutions. These
cases emerge from the two different constraints leading to
the left-hand sides of Eqs. �27� and �28� being zero.

A. Solutions parametrized by velocity v

First we assume �=0 and require

�xf = qf . �31�

This replaces Eqs. �27�–�30� with the two systems of the
linear algebraic equations

Â1c� = 0, c� = �c1

c2
�, Â1 =	

v1

w
1

− 1
v2

w

 , �32�

Â2g� = 0, g� = �g1

g2
�, Â2 =	

u1

w
1

− 1
u2

w

 . �33�

Solvability conditions of these systems are det Â1

=v1v2 /w2+1=0, det Â2=u1u2 /w2+1=0 and the compatibil-
ity condition is v1v2=u1u2. The pulse width w is found from
the solvability conditions:

w = �− v1v2 = �1 − v2, �34�

w is real providing v� �−1,1�. Compatibility is satisfied pro-

viding 1=�1�2+v��1−�2�, where �1=
1+
/2d1

1−
/2d1
, �2=

1−3
/2d1

1−
/2d1
,

see, Eq. �21�. If 
=0, then �1,2=1 and v remains free to vary
within its limits. If 
�0, then the compatibility requires
v= �1−�1�2� / ��1−�2�.

In order to avoid unnecessary complications of the nota-
tions we will assume below that v1	0 and u1�0. If 
 is
sufficiently small, then the latter inequality naturally follows
from the former, see Eqs. �12� and �21�. For the chosen signs
the solutions for the constant amplitudes are
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c1

c2
=��v2�

�v1�
,

g1

g2
= −��u2�

�u1�
. �35�

Differential equation �31� is complemented by the two equa-
tions for q and �,

�xq = 
�f2, �x� = − 
qf2, �36�

where 
=w�c1c2+g1g2�. Now we are implementing a stan-
dard substitution

q = sin �, � = cos � �37�

complying with the probability constraint �5� and valid for
�=0. The resulting equations for � and f are

�xf = f sin �, �x� = 
f2. �38�

One can show that the above two equations conserve the
integral


f2 + 2 cos � = I1 = const. �39�

The choice of the integration constant I1 is physically im-
portant and leads to two different types of solutions. We will
be seeking for bright soliton solutions, i.e.,

lim
�t�→�

f = 0. �40�

For the initially unexcited medium we have

lim
�t�→�

� = 1, lim
�t�→�

�Q� = 0, �41�

which implies I1=2. For the medium initially excited to its
maximal coherence we have

lim
�t�→�

� = 0, lim
�t�→�

�Q� = 1, �42�

implying I1=0.

1. Solitons with exponentially decaying tails

For the maximum coherence condition �42� the second
of the Eqs. �38� transforms to the integrable equation
�x�=−2 cos � giving

cos � = − sech�2x� = � , �43�

sin � = − th�2x� = Q , �44�

f2 =
2



sech�2x� . �45�

Each of the systems �32� and �33� is solved up to an arbitrary
constant. For example, c1 and g2 can be chosen as arbitrary.
After combining Eqs. �24�, �25�, �36�, and �45� one can
demonstrate that the final expressions for the field
amplitudes depend only on the single arbitrary constant
R= �g2

2 /c1
2���u2v2� / �u1v1�:

C1 =�2 sech�2t/w�
�v1��1 − R�

, C2 = i�2 sech�2t/w�
�v2��1 − R�

, �46�

G1 =�2R sech�2t/w�
�u1��1 − R�

, G2 = − i�2R sech�2t/w�
�u2��1 − R�

,

�47�

where 0�R	1. Thus for R=0 we have a soliton solution
with the spectral content only at �=0. The soliton ampli-
tudes at �=�0 start to grow as R deviates from zero and for
R→1 the amplitudes of the components in the subgaps at
�=0 and �0 tend to become equal. An equivalent soliton
solution with most of the energy concentrated at �0 can be
obtained on replacing R with 1/R. Thus, assuming that far
from the soliton core the coherence of the Raman medium is
at its maximum, we have found a family of the exponentially
localized soliton solutions. The amplitudes of the fields B1,2
calculated from Eqs. �13�, �46�, and �47� as functions of the
parameter v are shown in Fig. 2. The amplitude oscillations
at �0 cease to exist as R→0.

2. Solitons with algebraically decaying tails

The minimum coherence condition �41� means that the
band gap is closed and therefore the exponential localization
is not possible. However, algebraically localized solutions, or
rational solitons, are still possible. The second of the Eqs.
�38� transforms to �x�=2�1−cos �� giving

cos � = 1 −
2

1 + 4t2/w2 = � , �48�

sin � =
− 4t/w

1 + 4t2/w2 = Q , �49�

FIG. 2. Intensities �B1,2�t��2 of the exponentially localized soli-
tons for different values of v. The other parameters �=0, R=0.3,
�0=50.
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f2 =
2




2

�1 + 4t2/w2�
. �50�

The answers for the field amplitudes in this case are obtained
on replacing sech�2t /w� in Eqs. �46� and �47� with
2/ �1+4t2 /w2�.

B. Solutions parametrized by wave number �

In the above subsection we have zeroed the left-hand
sides of Eqs. �27�–�30� by fixing � and as a result found
solitons parametrized by velocity v. However, the left-hand
sides can be zeroed without fixing �, but assuming that
c1=c2 and g1=g2. This can be achieved by providing
v2=−v1, which requires v=0, and u2=−u1, which requires

=v=0. Thus, v1=u2=−1, v2=u1=1, x= t, and � is left free
to vary. The system of equations to solve is then

�t f = qf , �tq = �f2, �t� = − qf2. �51�

The substitution complying with the probability constraint
�5� and Eq. �26� with ��0 is

q = �1 − �2sin �, � = �1 − �2 cos � , �52�

cf. Eq. �37�. The resulting equations for f and � are

�t f = �1 − �2f sin �, �t� = 
f2, �53�

where 
=c1
2−g1

2. The integral of motion for Eqs. �53� is


f2 + 2�1 − �2 cos � = I2 = const. �54�

Applying the boundary conditions �42� we need to integrate
the equation �t�=−2�1−�2cos � �I2=0� and the equation

�t�=2�1−�2�1−cos �� �I2=2�1−�2� for the conditions
�41�. The first case gives us the solitons with the exponen-
tially decaying tails

C1 =�2 sech�2t/W�
W�1 − R�

, C2 = i�2 sech�2t/W�
W�1 − R�

, �55�

G1 =�2R sech�2t/W�
W�1 − R�

, G2 = − i�2R sech�2t/W�
W�1 − R�

,

�56�

where

W =
1

�1 − �2
, R =

g1
2

c1
2 . �57�

The corresponding coherence and population inversion are

Q = − i� − �1 − �2th�2t/W� , �58�

� = − �1 − �2 sech�2t/W� . �59�

The second case gives algebraic solitons with

Q = − i� − �1 − �2 4t/W

1 + 4t2/W2 , �60�

� = �1 − �2�1 −
2

1 + 4t2/W2� . �61�

The field amplitudes are found in this case by replacing
sech�2t /W� function in Eqs. �55� and �56� with
2/ �1+4t2 /W2�. �B1,2� calculated for the algebraic solitons as
functions of the parameter � are shown in Fig. 3. � varying
from −1 to +1 means a shift of the soliton spectrum from the
lower to the upper boundary of the band gap.

VI. NUMERICAL MODELING OF THE SOLITON
PROPAGATION AND COLLISIONS

Now we will present results of the numerical modeling of
the original system �1�–�4�. The first series of numerical ex-
periments we carried out was for the initial conditions given
by Eqs. �46� and �47� with R=0. We have tested stability of
these solutions for �=0, d1,2=0, and various values of v.
Though no strong instabilities have been observed, we no-
ticed that for v�0 the soliton experiences adiabatic changes
in its velocity, while v	0 region is free from this effect. In
order to study solutions with R�0 we fixed v=−0.64, i.e.,
v1=−0.36, v2=1.64. Our choice of the dimensionless GVD
coefficients is d1=0.0072, d2=−0.0328, which is both prac-
tically realistic and comfortably falls into the limits of valid-
ity of our slowly varying approximation giving �0=50. Then
we initialized Eqs. �1�–�4� with �46� and �47� using different
values of R controlling the relative energy of the fields in the
two subgaps. We have found that for R varying from zero to
approximately 0.5 the solitons propagate stably over long
distances, see Fig. 4. However, when amplitudes of the field
components in the subgap at �=�0 start being comparable
with the ones in the subgap at �=0 �R→1�, the soliton
structure becomes unstable, see Fig. 5.

Because of the approximations made in transforming Eqs.

FIG. 3. Intensities �B1,2�t��2 of algebraically localized solitons
for different values of �. The other parameters are v=0, R=0.3,
�0=50.
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�1�–�4� to Eqs. �14�–�19�, it is not a priori obvious that the
complete system does not impose a selection rule prescribing
a certain value to R. Our attempts to work out possible con-
straints on R by advancing into the next order of the pertur-
bation theory have not given any results for the selection
rule. This, however, does not completely exclude existence
of the selection rule in the higher orders. Our numerical ex-
periments indicate continuous parametrization of the soliton
family with R, because for R	0.5 we have repeatedly ob-
served stable propagation of solitons over long propagation
distances with no detectable reshaping.

Since we have found, that each of the two Raman com-
ponents is split into two further components by the GVD
effect, see Eq. �13�, the solitons with R�0 represent the
four-frequency structures. Below we demonstrate that to ob-

serve these solitons it is enough to use a two-frequency
pump, which is a common setup in experiments with Raman
active media �2�. We have confirmed numerically that a
single frequency pump pulse is enough to excite the Raman
solitons at each of the two subgaps. Thus using two laser
sources detuned by �0 one can excite the two uncoupled
Raman solitons at each of the subgaps. These solitons will
generally move with different group velocities and this fact
can be used to our advantage. By introducing the time delay
between the moments when these structures are created we
have initiated their collisions. The frequently observed out-
comes of these collisions have been excitations of the
coupled solitons with spectrum in both subgaps. Figures 6�a�
and 6�b� illustrate collision dynamics observed for the
following initial conditions: B1=3.3�sech�t /0.25� and B2

=5�sech(�t−70� /0.25)ei50t. The initial nonsolitonic pump
pulses are marked in Fig. 6 by p1 and p2. At the first stage of
the evolution one can see the formation of the solitons s1 and
s2. Each of those is spectrally localized at its own subgap at
�=0 and �=50, respectively. For z�44 the solitons collide
and the new solitons, marked by s1� and s2�, emerge from this
collision. The soliton s1� remains spectrally localized inside
the gap at �=0, but the second soliton s2� has two spectral

FIG. 4. z evolution of the exponentially localized soliton with
R=0.3, �=0 as obtained from the direct numerical modeling of Eqs.
�6�–�9�. Parameters are v1=−0.36, d1=0.0072, v2=1.64,
d2=−0.0328. The soliton is resting in the chosen reference frame.

FIG. 5. The same as Fig. 4, but for R=0.8.

FIG. 6. �a�, �b� Soliton collisions resulting from the initial con-
ditions: B1=3.3�sech�t /0.25�, B2=0 for the pulse p1 and B1=0,

B2=5�sech��t−70� /0.25�exp�i50t� for the pulse p2. The two soli-
tons s1 and s2 formed from the initial pulses collide at z
44. The
collision gives birth to the solitons s1� and s2�. Spectra of s1 and s2

are localized at �=0 and �=50, respectively. Spectrum of s1� is

localized around �=0, while spectra of the fields B̃1,2 forming s2�
are localized around �=0 and �=50. The spectra corresponding to

s2� are shown in panels �c� and �d�. �c� is the spectrum of B̃1 and �d�
is the spectrum of B̃2.
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components at each of the subgaps. This has been confirmed
by cutting out the corresponding part of the time window and
taking Fourier transforms of the emerging solitons, see Figs.
6�c� and 6�d� for the spectrum of s2�. It has been checked that
the s2�-soliton propagates without spread for very long dis-
tances, see Figs. 6�c� and 6�d�.

VII. SUMMARY

We have considered the pump-Stokes interaction in a Ra-
man medium with group velocity dispersion using the quan-
tum mechanical description of the Raman transition. The dis-
persion profile with the two subgaps, which either form or do
not form a complete band gap has been found in this model.
An analytical technique of finding soliton families residing
within the complete band gap has been developed. Estimates
of the physical quantities involved and numerical modeling
of the underlying partial differential equations indicate po-
tential relevance of these structures for the experiments on
the short-pulse propagation in photonic band-gap fibers filled
with Raman active gases.
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APPENDIX: SCALING OF EQUATIONS

In this Appendix we present details of the normalization
procedure leading to Eqs. �1�–�4� and workout estimates for
the scaling coefficients. We start by taking the two-field Ra-
man equations �4.76�–�4.80� from Ref. �11� and renormalize
them to the form conventional for the fiber optics literature
�20�. The equations in �11� are

��z + �1
�1��t +

i

2
�1

�2��t
2�F1 = iq12

��1N0

2
0c
�21F2,

��z + �2
�1��t +

i

2
�2

�2��t
2�F2 = iq12

��2N0

2
0c
�21

* F1,

�t�12 + 
12�12 = − iq12F1
*F2� ,

�t� + 
11�� − 1� = i2q12�F1F2
*�12 − F1

*F2�21� ,

where we replaced diffraction with the GVD terms and dis-
regarded Stark shifts. 1 /�1,2

�1� are the group velocity and �1,2
�2�

are the group velocity dispersions of the two fields. Total
occupancy of the levels involved can be expressed via the
coherence �12 and the population inversion �: 4��12�2+�2

=1. The field amplitudes F1,2 are measured in V/m and they
are linked to the field amplitudes used in the context of the
fiber optics �20� via �F1,2�2=Z�A1,2� /2, where Z=1/
0c is the
impedance of the free space. Dimension of �A1,2�2 is W/m2.
Introducing Q=2�21=2�12

* and the Kerr nonlinearity in or-
der to properly estimate its relative importance we have

i��z + �1
�1��t +

i

2
�1

�2��t
2�A1 = − q12

��1N0

4
0c
QA2,

i��z + �2
�1��t +

i

2
�2

�2��t
2�A2 = − q12

��2N0

4
0c
Q*A1,

i�tQ + 
12Q = − q12ZA1A2
*� ,

�t� + 
11�� − 1� = iq12�Z/2��A1A2
*Q* − A1

*A2Q� .

To reveal the link between the well tabulated Raman gain
parameter gss and the dipole moment q12, we assume �=1
�ground state� and Q= iq12ZT2A1A2

*. Here and below
T2=1/
11 and T1=1/
12. Hence

�zA1 = − q12
��1Z̄

2

q12Z̄T2N0

2
A1�A2�2,

�zA2 = q12
��1Z̄

2

q12Z̄T2N0

2
A2�A1�2.

Steady state Raman gain is defined as growth rate of the
intensity of the Stokes signal �A2� and given by

gss=q12
2 ��1Z̄2T2N0 /2, which has dimension of mW−1.

Now we introduce retarded time �= t−z /V+, where
V±=2/ ��1

�1�±�2
�1�� and normalize �=�0T, z=z0�, where T and

� are dimensionless and

z0 = 2�2� T2

gss��1N0
, �0 =

1

2
z0��1

�1� − �2
�1�� .

Normalization for fields is

�A1,2�2 = ��B1,2�2, � =
1

�0
���1T2N0

gss
�B1,2�2.

All this results in the equations

i��� + s�� +
iz0

2�0
2�1

�2���
2�B1 = − QB2,

i��� − s�� +
iz0

2�0
2�2

�2���
2�B2 = − Q*B1,

i��� +
�0

T2
�Q = − B1B2

*� ,

��� +
�0

T1
�� − 1� = −

i

2
�B1B2

*Q* − B1
*B2Q� ,

where s=sgn�V−�.
For our rough estimates of physical scales involved we

take the density of atoms N0=2.5�1025 m−3, the pump
frequency �1 corresponding to the 1 �m wavelength.
Choosing D2 as a Raman active medium we have
gss=0.45�10−11 m/W, T2�100 ps. Assuming V−=100c
�13� we have z0=0.6 cm, �0=200 fs, and scaling for the in-
tensity �=4 TW/cm2. For the typical area of the fundamen-

RAMAN SOLITONS WITH GROUP VELOCITY DISPERSION PHYSICAL REVIEW E 74, 046616 �2006�

046616-7



tal mode of a hollow-core PBG
50 �m2 the above intensity
corresponds to 2 MW of the peak power. Typical ���2��
values vary from 0 to 1 ps2 /m, which gives us
d1,2�z0���2�� /�0

2 varying from 0 to 0.1. The angular Raman
frequency for vibrational transitions in D2 is 600 rad/ps. De-

tuning between the two band gaps �0=50 used in the nu-
merical modeling corresponds to 200 rad/ps. Similar results
have been obtained for detunings down to 40 rad/ps. The
relaxation constants �0 /T1,2 are order of 10−3 at most and
have also been disregarded in Eqs. �1�–�4�.
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